Student name: Date:	[tab-a020]
---------------------	------------

[Exercise]

- Fill again the table of splittings on the simulator but changing the order of the two larger constants, that is, $a_H^{2,2',6,6'} = 2 \cdot a_H^{4,4'}$. Simulate the new spectrum (simulation 2).
- Measure the heights of the central lines of each quintete and the total length of the spectrum.
- Complete the Table the intensities measured for both spectra.
- Enclosed the result in the laboratory notebook.

Intensities Table 3. Biphenyl anion radical [a020].

Simulation 1
$$(a_H^{4,4'} = 2 \cdot a_H^{2,2',6,6'})$$

$$L ext{ (spectrum)} = \dots mT.$$

Intensities of the central lines of the nine quintets										
	Peak-1	Peak-2	Peak-3	Peak-4	Peak-5	Peak-6	Peak-7	Peak-8	Peak-9	
Pixels										
Normalized ^a										
Theoretical ^b										

Simulation 2
$$(a_H^{2,2',6,6'} = 2 \cdot a_H^{4,4'})$$

Intensities of the central lines of the eleven quintets											
	Peak-1	Peak-2	Peak-3	Peak-4	Peak-5	Peak-6	Peak-7	Peak-8	Peak-9	Peak-10	Peak-11
Pixels											
Normalized ^a											
Theoretical ^c											

^a Normalize the intensities so that the smallest one will worth the unit.

^b Theoretical intensities given in section 8.1.10.

^c Deduce the theoretical intensities and write them down.